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vii Summary 

CARBON NANOTUBES AS ELECTRON GUN SOURCES 
Mark Mann 

 
This dissertation presents the development of a manufacturable carbon nanotube (CNT) electron 

source for specific application to high-quality electron beam equipment. It first details the 

advantages CNTs have over other electron sources and then describes the various methods used to 

fabricate carbon nanotubes. 

 
For an effective electron source, it is important that the electrons come from one CNT, because if 

there are two, they will interfere with each other. After controlling the geometry of the tungsten 

wire during etching so that the apex diameter is less than 100 nm, a new process was developed to 

grow one multi-walled carbon nanotube typically 50 nm in diameter and a few hundred nm in 

length at the apex by plasma-enhanced chemical vapour deposition (PECVD). This process 

resulted in a 49% yield of single CNT tips aligned with the optical axis; a significant improvement 

on methods mentioned elsewhere [1]. The process was then modified so that CNTs could be 

grown on etched wires mounted on hairpins and by putting an entire electron source module into 

the reaction chamber. These modified processes gave similar yields. 

 
Field emission experimentation was carried out on the CNT tips. CNTs need to undergo a rapid 

thermal anneal to remove adsorbed gaseous species and to complete the cap structure at the top. 

Stability, poorly defined elsewhere, has been replaced by drift and instability to describe peak to 

peak and standard deviation fluctuations in emission currents respectively. Instability was found 

to be less than 1% after three weeks of emission, comparable to that measured by De Jonge [1], 

but was found to increase if not annealed rapidly frequently. It was also found that the CNTs 

should not be operated at pressures of 10-8 mbar and above because instability was found to be too 

high. Kinetic energy spread was found to be as little as 0.28 eV at 20 nA total current. The CNT 

could be as much as three times as bright as current commercially available Schottky emitters. 

 
On placing the CNT source in an electron microscope, micrographs were taken to compare it with 

a typical Schottky source. With the same system geometry, the resolution of the CNT was found 

to be twice that of the Schottky indicating a smaller virtual source size.  

 
This work shows that CNTs are a viable electron source and in performance are at least equal and 

in some cases better than state-of-the-art electron sources currently available.  
 
 

[1] N. de Jonge, M. Allioux, M. Doytcheva, M. Kaiser, K.B.K. Teo, R.G. Lacerda and W.I. Milne. 

"Characterization of the field emission properties of individual thin carbon nanotubes", Applied 

Physics Letters 85, (2004). 



 Table of contents viii 

 

PUBLICATIONS  

 

1. "Helium detection via field ionisation from carbon Nanotubes," D.J. Riley, M. 

Mann, D.A. MacLaren, P.C. Dastoor, W. Allison, K.B.K. Teo, G.A.J. 

Amaratunga and W.I. Milne, Nanoletters 3, 1455 (2003). 

 

2. “Statistical Mechanics and Reversible States In Quasi-Static Powders.” A. 

Chakravarty, S. F. Edwards, D. V. Grinev, M. Mann, T. Phillipson, A. J. 

Walton. Quasi-static Deformations of Particulate Materials, Ed. K. Bagi, 123-

135, Budapest University of Technology and Economics Publishing Company, 

Budapest (2003) 

 

3. "Direct growth of multi-walled carbon nanotubes on sharp tips for electron 

microscopy", M. Mann, K.B.K. Teo, W.I. Milne, and T. Tessner. NANO: Brief 

Reports and Reviews 1, 35 (2006). 

4.  “Carbon nanotubes as electron sources” M. Mann, K.B.K. Teo, W.I. Milne. 

Carbon Based Nanomaterials by Trans Tech Publishers, Switzerland. 2007* 

5. W. I. Milne, K. B. K. Teo, M. Mann, I. Y. Y. Bu, G. A. J. Amaratunga, N. De 

Jonge, M. Allioux, J. T. Oostveen, P. Legagneux, E. Minoux, L. Gangloff, L. 

Hudanski, J.-P. Schnell, L. D. Dieumegard, F. Peauger, T. Wells, and M. El-

Gomati. Carbon nanotubes as electron sources, Phys. Stat. Sol. (a) 203, No. 6, 

1058–1063 (2006).  

 

6. "Fabrication of Carbon Nanotube-based Nanodevices using a Combination 

Technique of Focused Ion Beam and Plasma Enhanced Chemical Vapour 

Deposition, "J. Wu, M. Eastman, T. Gutu, M. Wyse and J. Jiao, S.-M. Kim, M. 

Mann, Y. Zhang and K.B.K. Teo, Applied Physics Letters 91, 173122 (2007). 

 

7. “Low temperature electron spin resonance investigation on SWNTs after 

hydrogen treatment.” S. Musso, S. Porro, M. Rovere, A. Tagliaferro, E. 

Laurenti, M. Mann, K.B.K. Teo, W.I. Milne. Diamond & Related Materials 15 

(2006) 1085 – 1089. 



 Publications 

 

8. “Apparatus and methods for growing nanofibres and nanotips.” M. Mann, 

K.B.K.Teo, W.I. Milne. (Patent no. GB 0503139.8, filed 16-Feb-2005) 

 



 Table of contents x 

 

NOTATION 

 

Units 

As a general rule, S. I. units are used throughout this dissertation.  The only exceptions to 

this rule are where accepted practice dictates otherwise.  The two exceptions are gas flow 

rate, which is measured in standard cubic centimetres per minute (sccm), and gas 

pressure, which is measured in millibar (mbar).  1 sccm = 1.6667 x 10-8 m3sec-1, and 1 

mbar = 100 Pa. 

 

References 

References to published literature are given in the text in the form [Authorn], where 

Author is the surname of the first-named author, and n is a reference number which refers 

to the list of references to be found at the end of each chapter. 

 

Abbreviations 

All abbreviations are written in full at their first occurrence in the text, with the 

abbreviation given next to it in brackets, for example Plasma Enhanced Chemical Vapour 

Deposition (“PECVD”). 
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